有時鋼中出現(xiàn)的 σ 相,采用任何染色的方法均無法辨別其頗色,可采用 SEM 的分析方法來鑒別。因為已知 σ 相為鐵與鉻的化合物,含鉻量為 42%~48%,通過 EDS 定性和定量分析測出未知相的組成元素及其含量,從而確定未知相。
對基體和析出相進行的微區(qū)定量分析結(jié)果見《表 2》。
《表 2》 EDS 定量分析結(jié)果 / %
成分 | Fe | Cr | Ni | Mo | Si | Mn |
---|---|---|---|---|---|---|
基體 | 70.463 | 16.365 | 10.211 | 1.239 | 0.466 | 1.257 |
析出相 | 56.908 | 33.629 | 3.681 | 4.835 | 0.040 | 0.907 |
EDS 分析結(jié)果表明,析出物的含鉻量為 33.6%,明顯高于基體中的 Cr 含量 16.3%,而 σ 相的含鉻量是 42%~48%,因而否認析出相為 σ 相。綜合染色試臉、熱處理試驗的結(jié)果,認為不銹鋼蝶閥組織中的析出相不是 σ 相。經(jīng) SEM 觀察析出相為一種共晶組織,是以鉻為主的碳化物。
不銹鋼蝶閥的材料為鎳鉻奧氏體不銹鋼,這種材料一般都在固溶狀態(tài)下使用。在室溫狀態(tài)下,其組織為奧氏體,奧氏體不銹鋼在廣泛的腐蝕介質(zhì)中特別是大氣中具有良好的抗腐蝕能力。對不銹鋼蝶閥銹蝕的原因分析如下:
① 綜合上述各項試驗的結(jié)果,可判定蝶閥材料組織中析出相不是 σ 相,故蝶閥的銹蝕現(xiàn)象不是由 σ 相引起的。
② 通過 SEM 觀察,確認蝶閥的組織中析出相是以鉻為主的碳化物,這種共晶組織沿晶界分布。EDS 分析結(jié)果表明這種分布在晶界上的碳化物鉻含量明顯高于基體。這種碳化物是 M<sub>23</sub>C<sub>6</sub> 型。隨碳化物的析出,又得不到鉻的擴散補充時,以碳化鉻的形式沿奧氏體晶界析出,在碳化物周圍形成貧鉻區(qū),從而奧氏體不銹鋼晶界易被腐蝕。所以沿晶界析出的碳化物是造成蝶閥銹蝕的主要原因。
③ 經(jīng)固溶處理后的奧氏體不銹鋼,由于在高溫加熱時大部分碳化物被溶解,奧氏體中飽和了大量的碳與鉻,并因隨后的快速冷卻而固定下來,使材料有很商的耐腐蝕性。因此應嚴格控制熱處理工藝,固溶處理時將工件加熱至高退,使碳化物充分溶解,然后迅速冷卻,得到均一奧氏休組織。固溶處理后,如果采用緩慢冷卻,在冷卻過程中碳化鉻將沿晶界析出,從而導致材料耐腐蝕性能降低。